
A SIMPLER KERNEL FOR STRATIFIED MUKAI FLOPS

ED SEGAL AND WEI TSEU

Abstract. We reinvestigate the problem of describing the Fourier-Mukai ker-

nel for the derived equivalence associated to a stratified Mukai flop. For the

case of Grassmannians of planes we give a very simple geometric construction
of the kernel, using the framework of matrix factorizations.

Contents

1. Introduction 1
1.1. Results and outline 2
1.2. Acknowledgements 4

2. Magic windows and kernels 4
3. Review of the Grassmannian flop 6
4. Stratified Mukai flops 7

4.1. The geometry of the kernel 7
4.2. The weights of the kernel 8
4.3. A free resolution 10

5. Comparison to CKL 11
References 14

1. Introduction

There is a famous conjecture of Bondal-Orlov [BO] and Kawamata [Kaw] that
if two smooth varieties X+ and X− are connected by a flop then there should also
be a derived equivalence:

Db(X+) ∼= Db(X−)

Here we are using the word ‘flop’ as a synonym for ‘K-equivalence’, i.e. a birational
transformation admitting a proper birational roof

X+
π+←− X̃ π−−→ X−

with the property that π∗+KX+
= π∗−KX− . The general case of this conjecture

seems some way off, but it has been established in many classes of examples [Br,
N1, CKL, S1, DS, S2, HLS, H, HL2, MSYZ] using a variety of different techniques.

Some of these techniques provide an explicit Fourier-Mukai kernel

K ∈ Db(X+ ×X−)

for the derived equivalence, but some do not. In the latter case, even once the
equivalence has been proven, there is the follow-up problem of finding a description
of the kernel. And this second problem is important; if one could formulate a
plausible guess for K in general then that would provide an entry point for proving
the conjecture.

One guess for K is to take the structure sheaf on the fibre product X+ ×X0
X−

where X0 is the common contraction of X±. This works for standard flops [BO] and
1
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Grassmannian flops [B+], where the fibre product is smooth and indeed the same

as the obvious correspondence X̃. It also works for Mukai flops [N1] and Abuaf
flops [H], where the fibre product is reducible with two components. Unfortunately
this guess fails once we get to stratified Mukai flops

X+ = T∨Gr(k, n) L9999K T∨Gr(n, k) = X−

where the fibre product has many irreducible components [N2].1

Nevertheless, it is known that stratified Mukai flops do induce derived equiva-
lences. This was first proven in the remarkable paper of Cautis-Kamnitzer-Licata
[CKL] as a consequence of of a much larger structure: a categorical sl2 action. A
follow-up paper [C] provided an explicit description of the kernel K. It is a sheaf
on the fibre product but not simply the structure sheaf; one must put specific line
bundles on each component, away from the triple intersections, and then take a
reflexive extension.2

A very different proof of the derived equivalence for stratified Mukai flops was
found by Halpern-Leistner and Sam [HLS], as a special case of a large class of
examples. There are two main ingredients in their approach:

(1) Building on work of Špenko-Van den Bergh [SVdB], they use the technique
of ‘magic windows’ to prove that flops coming from quasi-symmetric GIT
problems always give derived equivalences.

(2) Using Knörrer periodicity they replace the derived categories in the strat-
ified Mukai flop with categories of matrix factorizations on two higher-
dimensional spaces. These higher-dimensional spaces are related by a flop
of the form considered in (1).

Recent work of the second author [T] shows that these two proofs produce the
same set of derived equivalences.3

The aim of the current paper is to unpack the Halpern-Leistner–Sam equiva-
lence and provide an explicit description of the kernel, as an object in the relevant
category of matrix factorizations. The bad news is that we only manage to solve
the problem in the case k = 2. The good news is that, in that case, the answer
is as simple as one could hope for. In particular it is the fibre product of the
higher-dimensional spaces. We explain our result in Section 1.1 below.

Our conclusion is that the complexity of stratified Muki flops is (at least for
k = 2) an artifact of Knörrer periodicity; if one is happy to stay in the world of
matrix factorizations then the kernel is easy to construct, and the intracies found
by [C] arise only when one passes back to the world of derived categories.

Of course it would be nice to be able to extend our results to k > 2. Unfortu-
nately part of our argument (Section 4.3) is very specific to the k = 2 case and it
is unclear to us what the correct generalization should be.

1.1. Results and outline. Let V be a finite-dimensional vector space, choose
0 < k < dimV , and let S denote the tautological rank k bundle on Gr(k, V ). The

1It may be tempting to try to repair this using the derived fibre product, but this fails already for

standard flops. There the derived and classical fibre products are different and it is the classical
one that gives the equivalence.
2The special case where (k, n) = (2, 4) had been worked out earlier by Kawamata [Kaw2].
3I.e. they give the same equivalence, up to shifts and the Picard group of both sides. One can
make a physics argument that predicts this statement by examining the topology of the relevant
stringy Kähler moduli space.
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cotangent bundle of the Grassmannian is:

X+ = T∨Gr(k, V ) = Hom(V/S, S)Gr(k,V )

It sits as a subbundle inside Hom(V, S)Gr(k,V ), where it is cut out by a transverse
section of the pull up of the bundle End(S). If we write x and y for the tautological
sections of Hom(S, V ) and Hom(V, S) then the section cutting out X+ is:

y ◦ x ∈ Γ(End(S))

Now let Q denote the tautological rank k quotient bundle on the Grassmannian
of quotients Gr(V, k). In a similar way we have a subbundle:

X− = T∨Gr(V, k) ↪→ Hom(Q,V )Gr(V,k)

The Grassmannian flop is the evident birational equivalence between the spaces
Hom(V, S)Gr(k,V ) and Hom(Q,V )Gr(V,k). It induces a birational equivalence be-
tween X+ and X−, this is the stratified Mukai flop.

Now write

E+ = Hom(V, S)⊕ End(S)Gr(k,V )

for the total space of the bundle End(S), pulled-up to Hom(V, S)Gr(k,V ). The
section y ◦ x becomes (since End(S) is self-dual) a function on this total space E+,
which we can write as

W = tr(p ◦ y ◦ x) ∈ Γ(OE+
)

where p is the tautological section of End(S). By Knörrer periodicity [O, Sh, ...]
there is an equivalence

Db(X+) ∼= MF(E+,W )

from the derived category of X+ to the category of matrix factorizations of W .
Similarly, Db(X−) is equivalent to the category of matrix factorizations of a function
W ′ on:

E− = Hom(Q,V )⊕ End(Q)Gr(V,2)

The spaces E+ and E− are also birational, and the equivalence betweenDb(X+) and
Db(X−) can be viewed—via Knörrer periodicity—as coming from an equivalence:

MF(E+,W ) ∼= MF(E−,W
′)

In this description the Fourier Mukai kernel for the equivalence is an object of:

MF(E+ × E−, W ′ −W )

Theorem 1.1. Set k = 2. Let Eo ⊂ E± be the open subset where E+ and E− are
isomorphic and write

∆ ⊂ Eo × Eo ⊂ E+ × E−
for the diagonal in this subset. Then the structure sheaf on the closure of ∆

O∆ ∈ MF(E+ × E−, W ′ −W )

is the kernel for the window equivalence of [HLS].

Remark 1.2. (1) The functions W and W ′ agree on Eo, so W ′ −W vanishes
on ∆, hence O∆ is indeed an object in the matrix factorization category.

(2) The equivalence we are discussing restricts to the identity on Eo, so the
kernel must a priori be some extension of the sheaf O∆. Hence our result
really is the simplest we could hope for.
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(3) Write E0 for the affine singularity underlying E±. The variety ∆ agrees
with the fibre product:

∆ = E+ ×E0
E−

It is an irreducible and singular variety which can be described as a cone
over Gr(2, V ) × Gr(V, 2). It carries a function which is the restriction of
either W or W ′, and we have a correspondence of LG models:

(∆,W )

(E+,W ) (E−,W
′)

Another way to say Theorem 1.1 is that the window equivalence is induced
by this correspondence.

We will explain the geometry of ∆ in Section 4.1, and the proof of Theorem 1.1
in the remainder of Section 4.

Via Knörrer perodicity O∆ is equivalent to some object K in Db(X+×X−). By
the results of [T], we know that this K must be the Fourier-Mukai kernel found by
Cautis in [C]. For the sake of concreteness we compare them explicitly in Section
5.

1.2. Acknowledgements. Although we do not formally rely on their results we
were heavily inspired by the papers [BDF] and [B+] that discuss the problem of
producing kernels for window equivalences. After completing this paper we learned
from Matt Ballard that they have independently obtained our results for k = 2,
and also solved the k = 3 case with some computer algebra [BCF].

W.T. acknowledges early support from Engineering and Physical Sciences Re-
search Council [EP/S021590/1].

2. Magic windows and kernels

Let G be a reductive group and U a representation of G which is self-dual.4

Write Y for the Artin stack:

Y = [U/G]

Given an object E ∈ Db(Y), its restriction E|0 to the origin lies in Db(BG), so is
a direct sum of shifts of G-representations. For a given finite set W of irreducible
representations of G we define the grade-restricted subcategory, or window, to be
the full subcategory:

MW =
{
E ∈ Db(Y), E|0 contains only irreps from W

}
⊂ Db(Y)

In [HLS] (following [SVdB]) certain specific subsets W are defined, depending on
the represention U , with a remarkable property.5 The corresponding subcategories
MW are called magic windows.

Theorem 2.1. [HLS, Thm. 3.2] Let Y = U �θ G be a GIT quotient of U for a
generic stability condition θ. Then the restriction functor

MW → Db(Y )

is an equivalence.

4Or more generally quasi-symmetric.
5We will not give the combinatorial details of how these sets W are defined but we will say
explicitly what they are in the examples we care about.
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Here the GIT quotient Y means, by definition, the open substack of Y consisting
of θ-semi-stable points. So there is a restriction functor Db(Y)→ Db(Y ), which we
are evaluating on the subcategory MW.

One of the key points of the above thorem is that W only depends on U and
not on θ. The same window category works for all (generic) GIT quotients. Con-
sequently if Y+ and Y− are two different GIT quotients then we get a derived
equivalence:

Db(Y+)
∼←−MW

∼−→ Db(Y−)

This is called a window equivalence.

Remark 2.2. Associated to W there is a finite set of vector bundles on Y which
obviously lie inMW. In fact these vector bundles generateMW, and this is a large
part of the proof of the theorem.

Now we discuss the kernels for these window equivalences. Firstly, from Theorem
2.1 we get an embedding functor

Db(Y+) ↪→ Db(Y)

whose image is MW. This functor has some kernel K ∈ Db(Y+ × Y) with the
following two properties:

(1) The restriction of K to Y+ × Y+ is the structure sheaf O∆ on the diagonal,
because the composition of the embedding functor with restriction is the
identity on Db(Y+).

(2) Consider the object:

K|Y+×{0} ∈ D
b(Y+ ×BG)

It has a weight decomposition, i.e. it splits as a direct sum of objects in
Db(Y+) tensored with irreducible G-representations. Since the image of
the embedding functor is MW, only irreducible representations from W
can occur as weights of K|Y+×{0}.

A consequence of Theorem 2.1 is that K is the unique object with these two
properties; see [HL1, Sect. 2.3].6 And once we have K the kernel for the window
equivalence is easy; it’s simply the restriction of K to the open substack Y+ × Y−.

So the problem is to find the object K. In principle there is an algorithm for doing
this: choose an arbitrary extension K′ of O∆, then there is a specific sequence of
mutations which will bring it into the required window, without affecting property
(1). However in practice this is rarely feasible. A better approach is to:

• Make the correct guess for K first time.

• Prove that your guess is correct by computing the weights of K|Y+×{0}.

This is the approach that we use in this paper.

Remark 2.3. Suppose we have a G-invariant function W on U . This defines a
function on Y and (by restriction) a function on any GIT quotient. We can replace
derived categories with categories of matrix factorizations of W in all the above,
Theorem 2.1 remains true, and the story is unchanged. The function W is irrelevant
for the problem of finding K.

6Roughly, the argument is that Db(Y+ × Y+) is equivalent to the subcategory Db(Y+) �MW in

Db(Y+ × Y), and K is the object corresponding to O∆.
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3. Review of the Grassmannian flop

Fix vector spaces S, V of dimensions 2 and n > 2, and consider the Artin stack:

F = [ Hom(S, V )⊕Hom(V, S) / GL(S) ]

There are two generic GIT quotients of F , associated to either positive or negative
powers of the character det(S), they are:

F+ = Hom(V, S)Gr(2,V ) and F− = Hom(S, V )Gr(V,2)

This is the k = 2 case of the Grassmannian flop. Write F0 for the affine singularity
that underlies them both, it is the subvariety

F0 ⊂ End(V )

of endomorphisms of rank ≤ 2. Also write F o ⊂ F± for the open set where the two
spaces are isomorphic. In this example three spaces coincide:

(1) The obvious correspondence

F̃ = Hom(Q,S)Gr(2,V )×Gr(V,2)

between F+ and F−.

(2) The fibre product F+ ×F0 F−.

(3) The closure
∆F ⊂ F+ × F−

where ∆F ⊂ F o×F o is the diagonal. In F̃ , the locus ∆F is where the map
from Q to S is an isomorphism.

The structure sheaf on F̃ induces a derived equivalence between F+ and F−
[DS, BLV, B+]. Let us recall the proof of this in the ‘magic window’ framework
from Section 2.

In this example, a magic window can be constructed from the following set of
irreducible representations of the group GL(S) ∼= GL2:

W =
{

Symk S ⊗ (detS)l, l ≥ 0, k + l < n− 1
}

(3.1)

These are the irreducible representations corresponding to Kapranov’s exceptional
collection on Gr(2, n) [Kap]. Now we consider the further closure:

∆F ⊂ F+ ×F
The claim is that the structure sheaf on this locus is the kernel for the embedding
functor

Db(F+)
∼−→MW ⊂ Db(F)

which implies immediately that O∆F
is the kernel for the window equivalence. And

as explained in the previous section, to prove this claim we just need to verify:

Lemma 3.2. [B+, Kap] The restriction of O
∆F

to F+×{0} has weights contained

in the set W.

Proof. We introduce co-ordinates on F+ ×F as follows

S1 V S2

x1 y2

y1 x2

where x1 is an injection. Now consider the stack

DF ⊂ [ Hom(S1, V )⊕Hom(V, S2)⊕Hom(S2, S1) / GL(S1)×GL(S2) ]

where the first map is an injection. We give DF co-ordinates:

S1 V S2

x1 y2

a
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There is an obvious map DF → F+ × F by setting y1 = ay2 and x2 = x1a, and

this map is an embedding. Note that ∆F = F̃ is the locus in DF where y2 is a
surjection, and ∆F is where additionally a is an isomorphism.

Now factor the map DF → F+ × F through the intermediate stack HF which
has co-ordinates:

S1 V S2

x1 y2

x2

a

(3.3)

This stack HF is flat over F , and DF ⊂ HF is cut out by the transverse section:

x1a− x2 ∈ Γ
(
HF ,Hom(S2, V )

)
So we can resolve ODF

= O
∆F

with the Koszul complex of this section. Restricting

to F+ × {0}, we get the Kozul complex of the section x1a ∈ Γ(Hom(S2, V )) on
F+ × BGL(S2).

This section x1a is not transverse, but it is a transverse section of the subbundle
Hom(S2, S1). So the homology of the Kozsul complex is the exterior algebra on the
dual of the quotient bundle:

Hom(S2, V/S1)∨

The GL(S2)-irreps that occur in this exterior algebra are precisely the set W. �

Remark 3.4. The same argument works for k > 2, replacing W with the set of
Schur powers SγS indexed by Young diagrams with width(γ) ≤ n− k.

4. Stratified Mukai flops

4.1. The geometry of the kernel. For the stratified Mukai flop, we introduce
the stack

E = [ Hom(S, V )⊕Hom(V, S)⊕ End(S) / GL(S) ]

where as before dim(S) = 2 and dim(V ) = n > 2. We use co-ordinates x, y and p
for the three summands. This stack contains the spaces E± from Section 1.1 as the
open substacks

E+ = {rank(x) = 2} and E− = {rank(y) = 2}
although these are not quite the GIT quotients; see Remark 4.5. Write E0 for the
affine singularity underlying these three spaces.

Lemma 4.1. E0 embeds into the vector space

End(V )⊕2 ⊕ C2

via the map:

(x, y, p) 7→
(
xy, xpy, det(p), tr(p)

)
Proof. The claim is about the generators of the ring of GL(S)-invariant functions
on E . Firstly, by picking a basis for V and scaling the rows of x and the columns
of y separately we obtain a (C∗)2n action on E , commuting with the GL(S) action,
i.e. a 2n-dimensional multigrading on the ring of functions. By exploiting this
multigrading as in [KP, §4] we can essentially reduce the problem to the case n = 1.

Next, using the diagonal 1-parameter subgroup in GL(S) it’s clear that any
invariant function must be a polynomial in the entries of p and the entries of the
rank 1 matrix:

q = yx ∈ End(S)

Then by [KP, p. 21], the Cayley-Hamilton theorem, and the fact that det(q) = 0,
the ring of invariants (for n = 1) is generated by:

det(p), tr(p), tr(q) = xy and tr(pq) = xpy
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Returning to the case of general n, the invariants are generated by det(p), tr(p) and
the individual entries of xy and xpy. �

Now we want to understand the closure of the diagonal. Recall the stack DF from
Lemma 3.2, and let D be the total space of the vector bundle End(S1) ⊕ End(S2)
over DF . Thus D has co-ordinates

S1 V S2

x1
p1

y2

a

p2

(where x1 is an injection) and there is an embedding D ↪→ E+ × E . Recall that
Eo ⊂ E± denotes the common open subset, and ∆ ⊂ Eo × Eo the diagonal. Then
∆ is a subset of D, it is the locus where y2 and a have full rank and also:

p2 = a−1p1a

We can take the closure ∆ ⊂ E+ × E−, or the further closure ∆ ⊂ E+ × E ; both

lie inside D. In fact ∆ is the closed substack:

∆ = { ap2 = p1a, det(p1) = det(p2), tr(p1) = tr(p2) } ⊂ D (4.2)

Note that the first equation alone is not enough, it cuts out a reducible subvariety
with three equidimensional components (indexed by the rank of a). We need the

remaining equations to specify the correct irreducible component. In particular ∆
is not a complete intersection.

It follows from Lemma 4.1 that ∆ agrees with the fibre product E+ ×E0 E−. It
is a quadric cone over Gr(2, n)×Gr(n, 2).

4.2. The weights of the kernel. Now we introduce, as in Section 1.1, the invari-
ant function

W = tr(pyx) ∈ Γ(OE)
and the corresponding category of matrix factorizations MF(E ,W ). By Knörrer
periodicity MF(E ,W ) is equivalent to the derived category of the zero locus:

{yx = 0} ⊂ F
The two sides of the statified Mukai flop, X±, are the GIT quotients of this stack.
This is hyperkähler reduction; the equation yx = 0 is the complex moment map for
the action of GL(S) on the complex symplectic space Hom(S, V )⊕Hom(V, S).

Remark 4.3. We also include an additional C∗ action on E (the ‘R-charge’) which
acts on (x, y, p) with weights (0, 0, 2) and hence onW with weight 2. This is required
for the category of matrix factorizations to be Z-graded and for Knörrer periodicity
to work as stated. But it is essentially irrelevant for our proof of Theorem 1.1 so
we will avoid mentioning it as far as possible.

For the stack E a magic window can be built from the following set of GL(S)-
irreps:

W′ =
{

Symk S ⊗ (detS)l, l ≥ 0, k + l < n
}

(4.4)

Note the difference between this and the set W for the Grassmannian flop (3.1).
The additional factor of End(S) relaxes the bound on k + l by 1.

By Theorem 2.1 the corresponding magic windowMW′ ⊂ Db(E) is equivalent to
the derived category of either GIT quotient. There is also a window in the matrix
factorization category

MW
W′ ⊂ MF(E ,W )

defined by exactly the same grade-restriction rule as MW′ . Again the restriction
functors fromMW

W′ to matrix factorizations on either GIT quotient are equivalences
[HLS, Thm. 5.1]
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Remark 4.5. The GIT quotients of E are not E± but slightly larger open substacks.
The reason is that points where rankx < 2 (or rank y < 2) can be semi-stable,
provided some condition on p holds. However, the critical locus of W is contained
entirely in E±, so these additional semi-stable points do not affect the category of
matrix factorizations. Hence the restriction functors

MW
W′ → MF(E±,W )

are both equivalences. This is a general fact about hyperkähler quotients of this
form [HLS, §5].

Now we consider the stack E+ × E with the obvious function W2 −W1. The
sky-scraper sheaf O

∆
defines an object in the category

MF
(
E+ × E , W2 −W1

)
since ∆ is contained in the locus where W1 = W2. Theorem 1.1 follows immediately
from the following:

Proposition 4.6. The restriction of O
∆

to E+×{0} has weights contained in the

set W′.

Proof. Recall from Section 4.1 the stack D, which is the total space of the vector
bundle End(S1) ⊕ End(S2) over the stack DF that we used in Lemma 3.2. Write
H for the total space of the same vector bundle over the stack HF (3.3). Then we
have inclusions

∆ ↪→ D ↪→ H ↪→ E+ × E
and H is flat over E . Moreover, by (4.2) the locus ∆ is the intersection of D with
the substack:

C = { ap2 = p1a, det(p1) = det(p2), tr(p1) = tr(p2)} ⊂ H (4.7)

Since D ⊂ H is the subset {x1a = x2} the intersection of C and D is obviously
transverse. Hence

O
∆

= OC ⊗OD
does not need to be derived, and the weights of O

∆
along E+ × {0} are just the

tensor products of the weights of OC and OD.
The stack E+ × E is a vector bundle over F+ × F and D and H are just the

restrictions of this bundle to the substacks DF andHF . This means that computing
the weights of OD is the same problem as we encountered in the Grassmannian flop,
and the answer is the set W (Lemma 3.2).

Thus the problem is to compute the weights of OC , i.e. the additional weights
that appear from the (non-transverse) equations for C. To do this we view H as
the vector bundle

Hom(S2, S1)⊕ End(S1)⊕ End(S2)

over Gr(2, V )×F . Then C is a cone in this vector bundle cut out by the equations
(4.7). Furthermore we can ignore traces; we have splittings

End(Si) = End0(Si)⊕ C
where the first factor is the trace-free endomorphisms, and it is clear that we can
replace C with the set

{ ap2 = p1a, det(p1) = det(p2) } ⊂ Hom(S2, S1)⊕ End0(S1)⊕ End0(S2) (4.8)

without affecting our weight computation. In Section 4.3 below we show how to
complete this computation and find that the weights of OC are exactly:

O, S2, and detS2

Tensoring W by these irreducible representations gives precisely the set W′. �
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4.3. A free resolution. Let H be a 4-dimensional vector space. Consider the
GL(H)-representation

∧2H ⊕H
with co-ordinates (p, a), and let C be the invariant subvariety

C = { p ∧ p = 0, p ∧ a = 0 }

(the first equation is the Plücker relation). Thinking of this as a GIT problem, this
C is precisely the subvariety destabilized by a 1-parameter subgroup λ of the form:

γ : C∗ −→ GL(H), t 7−→
(
t−1

t−1

0
0

)
This means we have a Springer-type resolution of C given by the vector bundle

C̃ = (detU ⊕ U)Gr(2,H) −→ C

where U is the tautological subbundle on Gr(2, H). Hence, following Weyman [W],

we can construct a free resolution ofOC by embedding C̃ inside∧2H×H×Gr(2, H),
taking its Koszul resolution, and then pushing down. It is straight-forward to
compute that the resulting resolution is:

(detH)−2 −→ H∨(detH)−1 ⊕ (detH)−1 −→ (detH)−1 ⊕∧3H∨ −→ O

Now take two 2-dimensional vector spaces S1, S2 and set H = Hom(S2, S1). We
observe that we have an isomorphism of GL(S1)×GL(S2) representations

End0(S1)⊕ End0(S2) = ∧2H ⊗ (detS1)−1(detS2) (4.9)

where as above End0(Si) denotes the trace-free endomorphisms. So the represen-
tation ∧2H ⊕ H is essentially the same as the representation (4.8). Moreover C
corresponds to the locus

{ ap2 = p1a, det(p1) = det(p2) }

(this requires the correct choice of signs in the isomorphism (4.9)). So after modi-
fying by the correct powers of detSi we get a free resolution of OC of the form:

(detS2)(detS1)−1 −→ Hom(S1, S2)⊕(detS2)(detS1)−1 −→ O⊕Hom(S1, S2) −→ O
(4.10)

Thus the restriction of OC to the origin contains the GL(S2)-irreps

C, S2, detS2

and no others.

Remark 4.11. For the purposes of Section 5 let us make a comment on shifts and
R-charges (Remark 4.3). Implicit in the resolution (4.10) is the standard homolog-
ical algebra convention that the degrees shift by 1 as we move right-to-left across
the page, so the differentials all have degree 1. However, to work with matrix fac-
torizations we must take into account R-charge, and then this convention is not
quite correct. For example the first factor of the final map is:

det(p2)− det(p1) : O −→ O

But the R-charge of det(pi) is 4, so for the differential to have degree 1 we must
interpret it as a map:

det(p2)− det(p1) : O[−3] −→ O

Similar degree shifts apply to the other summands. If we take these into account,
and use the standard position-on-the-page convention, then (4.10) should really be:
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O O
⊕ Hom(S1, S2) Hom(S1, S2) ⊕

(detS2)(detS1)−1 (detS2)(detS1)−1

(4.12)
It is possible to turn this into a matrix factorization by adding additional arrows.

We repeat that this has no relevance to Theorem 1.1 since shifts are of no im-
portance there, only GL(S2) weights.

5. Comparison to CKL

We return temporarily to the case of general k and n. As before we let X± be
the two sides of the stratified Mukai flop, with co-ordinates (x, y) satisfying the

moment map condition yx = 0 (Section 4.2). Also recall the space F̃ = ∆F from
Section 3 which has co-ordinates:

S1 V S2

x1 y2

a

The fibre product X+ ×X0 X− is the subvariety of F̃ cut out by the equations:

ay2x1 = 0 = y2x1a (5.1)

It has k + 1 irreducible components Z0, ...Zk, distinguished by specific rank condi-
tions:

Zi = { (x1, y2, a), rank(a) ≤ k − i, null(y2x1) ≥ k − i }

Let Z̃i be the normalization of Zi, and set Θi to be the shifted line bundle:

Θi = OZ̃i
⊗ (detS1)i ⊗ (detS2)−i[−i].

In [CKL], Cautis, Kamnitzer and Licata constructed a Rickard complex

Θ =
{

Θk
d−→ · · · d−→ Θ1

d−→ Θ0

}
(5.2)

as a geometric categorification of the braid group action of the quantized sl2 on the
K-theory of the ‘quiver varieties’ tkT∨Gr(k, V ).

Theorem 5.3 ([CKL]). The complex (5.2) has a unique convolution T = Conv(Θ),
which defines the Fourier-Mukai kernel of a derived equivalence:

ΦT : Db(T ∗Gr(k, V )) ∼−→ Db(T ∗Gr(V, k)).

In [T], the second author translated the Rickard complex (5.2) into the context
of matrix factorizations. If we denote the Knörrer periodicity equivalence by

Ψ : Db(X±) ∼−→ MF(E±,W )

then it was shown ([T, Prop. 3.8]) that each functor ΨΦΘiΨ
−1 is induced by a

matrix factorization kernel of the form:

(πi)∗OIi ⊗ (detS1)k ⊗ (detS2)−k[−i2 − i] (5.4)

Here πi : Ii → E+ × E− is a projection from a variety Ii which we describe
as follows. First consider the flag variety Fl(k − i, k, n) with its two tautological
bundles S′ ⊂ S1 ⊂ V . Now take the total space

End(S′)⊕ End(S1)⊕ End(S2) −→ Fl(k − i, k, n)×Gr(n, k)
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which we give co-ordinates

S1 V S2

S′

p1

x1 y2

p2

a2a1

p′

where x1, y2, a1 are all of full rank. Then Ii is the subvariety cut out by the relations:

a1p
′ = p1a1, a2p2 = p′a2. (5.5)

As a1 is an embedding, the first equation in (5.5) is equivalent to p′ = p1|S′ . The
map πi : Ii → I0 ⊂ E+ × E− is given by composing a1a2 and forgetting p′.

The differentials d in (5.2) are transported via Knörrer periodicity to morphisms
of matrix factorizations, which we continue to denote by d. The result is a complex
of matrix factorizations:7

(πk)∗OIk [−k2 − k]
d−→ · · · d−→ (π1)∗OI1 [−2]

d−→ (π0)∗OI0 (5.6)

The totalization of this complex is (up to a line bundle) the kernel of the equivalence
ΨΦT Ψ−1.

Theorem 5.7 ([T, Thm. 3.3]). The totalization of (5.6) is the kernel for the
window equivalence corresponding to the window:{

SγS, 0 ≤ γk ≤ · · · ≤ γ1 < n
}

Note that for k = 2 this is the window W′ (4.4). Hence by Theorem 1.1:

Corollary 5.8. When k = 2 the totalization of (5.6) is equivalent to O∆ in the
category MF(E+ × E−,W2 −W1).

Our goal for the remainder of this section is to unpack Corollary 5.8 explicitly.
We will find locally free resolutions of each object in (5.6) and see that when we
form the convolution, after a lot of cancellation, we get exactly the resolution we
found in Section 4.3.

The right setting for this computation is the total space of the vector bundle:

End(S1)⊕ End(S2) −→ F̃

This is essentially the space D from Section 4.1.8 It carries the superpotential

W̃ = tr(y2x1ap2 − ay2x1p1)

which is the restriction of W2 −W1 from E+ × E−.

Remark 5.9. If the equations (5.1) cutting out the fibre product X+ ×X0 X− in F̃
were transverse then Knörrer periodicity would give an equivalence:

MF
(

End(S1)⊕ End(S2)F̃ , W̃
) ∼= Db(X+ ×X0

X−)

But they are far from transverse. So working in this category of matrix factoriza-
tions is the same as equipping the fibre product with a derived structure which is
non-trivial at all points.

7We omit the common line bundle (detS1)k⊗(detS2)−k that appears in each of the kernels (5.4).
8To be precise, it’s the open subset of D where rank(y2) = 2.
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Within W̃ = 0 we have the subvariety

I0 =
{
ap2 = p1a

}
as defined above. This is similar to the fibre product X+×X0×X− in that it consists
of three irreducible components distinguished by the rank of a. One component is
the space

I2 =
{
a = 0

}
⊂ I0

where rank(a) = 0. The component for rank(a) = 2 is

∆ =
{
ap2 = p1a, det(p1) = det(p2), tr(p1) = tr(p2)

}
⊂ I0

which equals the fibre product E+×E0 E− (Section 4.1). Finally we have the space

I1 =
{
p1 preserves the line S′ ⊂ S1, a2p2 = (p1|S′)a2

}
⊂ End(S1)⊕ End(S2)⊕Hom(S2, S

′)Fl(1,2,V )×Gr(V,2) (5.10)

There is a map π1 : I1 → I0 whose image consists of two irreducible components: I2
and the component for rank(a) = 1. Setting k = 2 in (5.6), the Cautis-Kamnitzer-
Licata kernel is—after Knörrer periodicity—the totalization of:

OI2 [−6] −→ (π1)∗OI1 [−2] −→ OI0 (5.11)

Now we compute some locally free resolutions. Firstly the locus I2 is cut out by
the transverse section a ∈ Γ(Hom(S2, S1)) so we have a Koszul resolution:

O(−2, 2) −→ S∨1 ⊗ S2(−1, 1) −→
Sym2 S2(−1,0)

⊕
Sym2 S∨1 (0,1)

−→ S∨1 ⊗ S2 −→ O (5.12)

Here for legibility we’ve adopted the notation O(a, b) = (detS1)a(detS2)b. As
usual we can turn this into a ‘Koszul-type’ matrix factorization by adding the
arrows p2y2x1 − y2x1p1 in the opposite direction.

Next consider the locus I0 itself, which is cut out transversely by ap2 − p1a ∈
Γ(Hom(S2, S1)). It is equivalent to a Koszul-type matrix factorization:

O S∨1 ⊗ S2

Sym2 S2(−1,0)
⊕

Sym2 S∨1 (0,1)
S∨1 ⊗ S2(−1, 1) O(−2, 2) (5.13)

Note that the Koszul resolution of OI0 consists of the right-to-left arrows only.
We’re writing it this way around because the section ap2 − p1a has R-charge 2, see
Remark 4.11.

This resolves the first and third terms of (5.11). The middle term (π1)∗OI1 is
more complicated. Within the space (5.10), the locus I1 is cut out by two transverse
conditions, so we can resolve OI1 on this space by the Koszul complex for the two
sections

p1 ∈ Γ(Hom(S′, S1/S
′)) and a2p2 − p1a2 ∈ Γ(Hom(S2, S

′))

which both have R-charge 1. Also, we have an embedding

Hom(S2, S
′)Fl(1,2,V )×Gr(V,2) ↪→ Hom(S2, S1)Fl(1,2,V )×Gr(V,2)

whose image is cut out by the transverse section

a2 ∈ Γ(Hom(S2, S1/S
′))

(which has R-charge zero). Using these three Koszul complexes, and pushing-down
along Fl(1, 2, V ) → Gr(2, V ), we construct a locally free resolution of (π1)∗OI1
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which has underlying C∗-equivariant vector bundle:

O(−1,1)

O
⊕

Sym2 S2(−1,0)
⊕

Sym2 S∨1 (0,1)
⊕

O(−1,1)
⊕

O(−2,2)

S∨1 ⊗S2

⊕
S∨1 ⊗S2

⊕
S∨1 ⊗S2(−1,1)

⊕
S∨1 ⊗S2(−1,1)

O
⊕

Sym2 S2(−1,0)
⊕

Sym2 S∨1 (0,1)
⊕

O(−1,1)
⊕

O(−2,2)

O(−1,1)

(5.14)
We have not attempted to indicate the differentials in this resolution. Once again
one can turn it into a matrix factorization by adding further arrows.

Now we wish to compare the convolution of (5.12), (5.13) and (5.14) with O∆.
In Section 4.3 we ignored traces, so to get a resolution of O∆ we must take two
copies of (4.12) and form the cone on the map tr(p2)−tr(p1), which has R-charge 2.
The result is a matrix factorization with underlying C∗-equivariant vector bundle:

O
⊕

O(−1,1)

S∨1 ⊗S2

⊕
O
⊕

O(−1,1)

S∨1 ⊗S2

⊕
S∨1 ⊗S2

O
⊕

O(−1,1)
⊕

S∨1 ⊗S2

O
⊕

O(−1,1)

This agrees with the convolution (5.11) assuming that the blue and red terms
cancel as indicated:

O(−2,2) S∨1 ⊗S2(−1,1)
Sym2 S2(−1,0)

⊕
Sym2 S∨1 (0,1)

S∨1 ⊗S2 O

O(−1,1)

O
⊕

Sym2 S2(−1,0)
⊕

Sym2 S∨1 (0,1)
⊕

O(−1,1)
⊕

O(−2,2)

S∨1 ⊗S2

⊕
S∨1 ⊗S2

⊕
S∨1 ⊗S2(−1,1)

⊕
S∨1 ⊗S2(−1,1)

O
⊕

Sym2 S2(−1,0)
⊕

Sym2 S∨1 (0,1)
⊕

O(−1,1)
⊕

O(−2,2)

O(−1,1)

O S∨1 ⊗S2

Sym2 S2(−1,0)
⊕

Sym2 S∨1 (0,1)
S∨1 ⊗S2(−1,1) O(−2,2)
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