A SIMPLER KERNEL FOR STRATIFIED MUKAI FLOPS

ED SEGAL AND WEI TSEU

ABSTRACT. We reinvestigate the problem of describing the Fourier-Mukai ker-
nel for the derived equivalence associated to a stratified Mukai flop. For the
case of Grassmannians of planes we give a very simple geometric construction
of the kernel, using the framework of matrix factorizations.
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1. INTRODUCTION

There is a famous conjecture of Bondal-Orlov [BO] and Kawamata [Kaw] that
if two smooth varieties X and X_ are connected by a flop then there should also
be a derived equivalence:

D'(X.) = DM(X_)
Here we are using the word ‘flop’ as a synonym for ‘K-equivalence’, i.e. a birational
transformation admitting a proper birational roof

X, x5S xo
with the property that 77 Kx, = 7" Kx_. The general case of this conjecture
seems some way off, but it has been established in many classes of examples [Br,

N1, CKL, S1, DS, S2, HLS, H, HL2, MSYZ] using a variety of different techniques.
Some of these techniques provide an explicit Fourier-Mukai kernel

KeDb(X, xX_)

for the derived equivalence, but some do not. In the latter case, even once the
equivalence has been proven, there is the follow-up problem of finding a description
of the kernel. And this second problem is important; if one could formulate a
plausible guess for K in general then that would provide an entry point for proving
the conjecture.

One guess for K is to take the structure sheaf on the fibre product X xx, X_
where X is the common contraction of X . This works for standard flops [BO] and
1
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Grassmannian flops [B+], where the fibre product is smooth and indeed the same
as the obvious correspondence X. It also works for Mukai flops [N1] and Abuaf
flops [H], where the fibre product is reducible with two components. Unfortunately
this guess fails once we get to stratified Mukai flops

X, =TV Gr(k,n) «----» TV Gr(n, k) = X_
where the fibre product has many irreducible components [N2].!

Nevertheless, it is known that stratified Mukai flops do induce derived equiva-
lences. This was first proven in the remarkable paper of Cautis-Kamnitzer-Licata
[CKL] as a consequence of of a much larger structure: a categorical sly action. A
follow-up paper [C] provided an explicit description of the kernel K. It is a sheaf
on the fibre product but not simply the structure sheaf; one must put specific line
bundles on each component, away from the triple intersections, and then take a

reflexive extension.?

A very different proof of the derived equivalence for stratified Mukai flops was
found by Halpern-Leistner and Sam [HLS], as a special case of a large class of
examples. There are two main ingredients in their approach:

(1) Building on work of Spenko-Van den Bergh [SVdB], they use the technique
of ‘magic windows’ to prove that flops coming from quasi-symmetric GIT
problems always give derived equivalences.

(2) Using Knorrer periodicity they replace the derived categories in the strat-
ified Mukai flop with categories of matrix factorizations on two higher-
dimensional spaces. These higher-dimensional spaces are related by a flop
of the form considered in (1).

Recent work of the second author [T] shows that these two proofs produce the
same set of derived equivalences.?

The aim of the current paper is to unpack the Halpern-Leistner-Sam equiva-
lence and provide an explicit description of the kernel, as an object in the relevant
category of matrix factorizations. The bad news is that we only manage to solve
the problem in the case £ = 2. The good news is that, in that case, the answer
is as simple as one could hope for. In particular it is the fibre product of the
higher-dimensional spaces. We explain our result in Section 1.1 below.

Our conclusion is that the complexity of stratified Muki flops is (at least for
k = 2) an artifact of Knorrer periodicity; if one is happy to stay in the world of
matrix factorizations then the kernel is easy to construct, and the intracies found
by [C] arise only when one passes back to the world of derived categories.

Of course it would be nice to be able to extend our results to k& > 2. Unfortu-
nately part of our argument (Section 4.3) is very specific to the k = 2 case and it
is unclear to us what the correct generalization should be.

1.1. Results and outline. Let V be a finite-dimensional vector space, choose
0 <k <dimV, and let S denote the tautological rank k bundle on Gr(k, V). The

It may be tempting to try to repair this using the derived fibre product, but this fails already for
standard flops. There the derived and classical fibre products are different and it is the classical
one that gives the equivalence.

2The special case where (k,n) = (2,4) had been worked out earlier by Kawamata [Kaw?2].

3].e. they give the same equivalence, up to shifts and the Picard group of both sides. One can
make a physics argument that predicts this statement by examining the topology of the relevant
stringy Kéahler moduli space.
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cotangent bundle of the Grassmannian is:
X+ = TV Gr(k, V) = HOHl(V/S, S)Gr(k,v)

It sits as a subbundle inside Hom(V, .S)qr(x,1), where it is cut out by a transverse
section of the pull up of the bundle End(S). If we write x and y for the tautological
sections of Hom(S, V) and Hom(V,.S) then the section cutting out X is:

yox € I'(End(S))

Now let @) denote the tautological rank k£ quotient bundle on the Grassmannian
of quotients Gr(V, k). In a similar way we have a subbundle:

X_ =TYGr(V,k) — Hom(Q, V)Gr(v,k)

The Grassmannian flop is the evident birational equivalence between the spaces
Hom(V, S)ar(k,vy and Hom(Q,V)ar(v,k)- It induces a birational equivalence be-
tween X, and X_, this is the stratified Mukai flop.

Now write
Ey =Hom(V, S) & End(S) g (x,v)

for the total space of the bundle End(S), pulled-up to Hom(V,S)gyk,v). The
section y o x becomes (since End(S) is self-dual) a function on this total space E,
which we can write as

W =tr(poyoz) €I'(Og,)

where p is the tautological section of End(S). By Knorrer periodicity [O, Sh, ...]
there is an equivalence

D'(Xy) = MF(Ey, W)
from the derived category of X to the category of matrix factorizations of W.
Similarly, D®(X ) is equivalent to the category of matrix factorizations of a function
W' on:
E_ = Hom(Q,V) ® End(Q)cr(v,2)

The spaces E, and E_ are also birational, and the equivalence between D?(X ) and
DP(X_) can be viewed—via Knorrer periodicity—as coming from an equivalence:

MF(E,, W) = MF(E_,W')
In this description the Fourier Mukai kernel for the equivalence is an object of:
MF(Ey x E_, W' = W)

Theorem 1.1. Set k =2. Let E° C Ey1 be the open subset where E and E_ are
isomorphic and write

A C E°XxE° C EL xE_
for the diagonal in this subset. Then the structure sheaf on the closure of A
Ox EMF(EL xE_, W —W)
is the kernel for the window equivalence of [HLS].

Remark 1.2. (1) The functions W and W’ agree on E°, so W' — W vanishes
on A, hence Ox is indeed an object in the matrix factorization category.

(2) The equivalence we are discussing restricts to the identity on E°, so the
kernel must a priori be some extension of the sheaf Oa. Hence our result
really is the simplest we could hope for.
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(3) Write Ey for the affine singularity underlying Ey. The variety A agrees
with the fibre product:

Z:E_;'_ XEOE_

It is an irreducible and singular variety which can be described as a cone
over Gr(2,V) x Gr(V,2). It carries a function which is the restriction of
either W or W', and we have a correspondence of LG models:

(E+7W) (E,,W/)

Another way to say Theorem 1.1 is that the window equivalence is induced
by this correspondence.

We will explain the geometry of A in Section 4.1, and the proof of Theorem 1.1
in the remainder of Section 4.

Via Knorrer perodicity Ox is equivalent to some object K in DY(X, x X_). By
the results of [T], we know that this K must be the Fourier-Mukai kernel found by
Cautis in [C]. For the sake of concreteness we compare them explicitly in Section
5.

1.2. Acknowledgements. Although we do not formally rely on their results we
were heavily inspired by the papers [BDF] and [B+] that discuss the problem of
producing kernels for window equivalences. After completing this paper we learned
from Matt Ballard that they have independently obtained our results for k = 2,
and also solved the k = 3 case with some computer algebra [BCF].

W.T. acknowledges early support from Engineering and Physical Sciences Re-
search Council [EP/S021590/1].

2. MAGIC WINDOWS AND KERNELS

Let G be a reductive group and U a representation of G which is self-dual.*
Write ) for the Artin stack:
Y =[U/G]
Given an object £ € D¥()), its restriction £y to the origin lies in D*(BG), so is
a direct sum of shifts of G-representations. For a given finite set 20 of irreducible

representations of G we define the grade-restricted subcategory, or window, to be
the full subcategory:

May = { € € D*(), | contains only irreps from 23 } C D*(Y)

In [HLS] (following [SVdB]) certain specific subsets 20 are defined, depending on
the represention U, with a remarkable property.® The corresponding subcategories
Mgy are called magic windows.

Theorem 2.1. [HLS, Thm. 3.2] Let Y = U [/9 G be a GIT quotient of U for a
generic stability condition 6. Then the restriction functor

May — DY(Y)
is an equivalence.
40r more generally quasi-symmetric.

5We will not give the combinatorial details of how these sets 20 are defined but we will say
explicitly what they are in the examples we care about.
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Here the GIT quotient Y means, by definition, the open substack of ) consisting
of f-semi-stable points. So there is a restriction functor D*()) — D®(Y'), which we
are evaluating on the subcategory Mayy.

One of the key points of the above thorem is that 20 only depends on U and
not on #. The same window category works for all (generic) GIT quotients. Con-
sequently if Y, and Y_ are two different GIT quotients then we get a derived
equivalence:

Db(Yy) <& Mgy — Db(Y_)
This is called a window equivalence.

Remark 2.2. Associated to 20U there is a finite set of vector bundles on ) which
obviously lie in Mgy. In fact these vector bundles generate Mgy, and this is a large
part of the proof of the theorem.

Now we discuss the kernels for these window equivalences. Firstly, from Theorem
2.1 we get an embedding functor

D*(Yy) = D*(Y)

whose image is Mgy. This functor has some kernel K € D°(Y, x ) with the
following two properties:

(1) The restriction of K to Y} x Y, is the structure sheaf Oa on the diagonal,
because the composition of the embedding functor with restriction is the
identity on D?(Y,).

(2) Consider the object:
Kly, x{0y € D*(Yy x BG)

It has a weight decomposition, i.e. it splits as a direct sum of objects in
D*(Y,) tensored with irreducible G-representations. Since the image of
the embedding functor is Mgy, only irreducible representations from 20
can occur as weights of Kly, x{o}-

A consequence of Theorem 2.1 is that K is the unique object with these two
properties; see [HL1, Sect. 2.3].° And once we have K the kernel for the window
equivalence is easy; it’s simply the restriction of K to the open substack Y x Y_.

So the problem is to find the object /. In principle there is an algorithm for doing
this: choose an arbitrary extension K’ of Oa, then there is a specific sequence of
mutations which will bring it into the required window, without affecting property
(1). However in practice this is rarely feasible. A better approach is to:

e Make the correct guess for I first time.
e Prove that your guess is correct by computing the weights of K|y, »0}-

This is the approach that we use in this paper.

Remark 2.3. Suppose we have a G-invariant function W on U. This defines a
function on Y and (by restriction) a function on any GIT quotient. We can replace
derived categories with categories of matrix factorizations of W in all the above,
Theorem 2.1 remains true, and the story is unchanged. The function W is irrelevant
for the problem of finding K.

SRoughly, the argument is that D?(Y, x Y, ) is equivalent to the subcategory D?(Yy )R Mgy in
DP(Yy x V), and K is the object corresponding to On.
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3. REVIEW OF THE GRASSMANNIAN FLOP

Fix vector spaces S,V of dimensions 2 and n > 2, and consider the Artin stack:
F = [Hom(S,V) @ Hom(V,S) / GL(S) |

There are two generic GIT quotients of F, associated to either positive or negative
powers of the character det(S), they are:

Fy =Hom(V,S)gre2vy and  F_ =Hom(S,V)ar(v2)

This is the & = 2 case of the Grassmannian flop. Write Fy for the affine singularity
that underlies them both, it is the subvariety

Fy C EHd(V)
of endomorphisms of rank < 2. Also write F'° C F4 for the open set where the two
spaces are isomorphic. In this example three spaces coincide:
(1) The obvious correspondence

F =Hom(Q, S)ar(2.v)xr(v.2)
between F; and F_.
(2) The fibre product F xp, F_.
(3) The closure
Arp C F+ x F_

where Ap C F° x F° is the diagonal. In 13, the locus Ap is where the map
from @ to S is an isomorphism.

The structure sheaf on F induces a derived equivalence between F, and F_
[DS, BLV, B+]. Let us recall the proof of this in the ‘magic window’ framework
from Section 2.

In this example, a magic window can be constructed from the following set of
irreducible representations of the group GL(S) 2 GLy:

%:{SymkS@)(detS)l,lZO,k+l<n71} (3.1)
These are the irreducible representations corresponding to Kapranov’s exceptional
collection on Gr(2,n) [Kap]. Now we consider the further closure:
A:F C F+ x F

The claim is that the structure sheaf on this locus is the kernel for the embedding
functor

Db(Fy) =% Mgy C Db(F)
which implies immediately that Oz is the kernel for the window equivalence. And
as explained in the previous section, to prove this claim we just need to verify:

Lemma 3.2. [B+, Kap] The restriction of Ox to Fi % {0} has weights contained
in the set 2.

Proof. We introduce co-ordinates on Fy x F as follows
Sl (Z—Q \%4 & SQ
1 T2
where x; is an injection. Now consider the stack
Dr C [Hom(Sl, V) D HOIH(VY, SQ) D HOHl(SQ, Sl) / GL(Sl) X GL(SQ) ]

where the first map is an injection. We give D co-ordinates:

Z1 Y2
S1 &K/ 52

a
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There is an obvious map Dr — F X F by setting y; = ays and 9 = z;a, and
this map is an embedding. Note that Ap = F is the locus in Dr where ys is a
surjection, and Ap is where additionally @ is an isomorphism.
Now factor the map Dp — F x F through the intermediate stack Hp which
has co-ordinates:
A =——2" (3.3)
a

This stack Hp is flat over F, and Dr C Hp is cut out by the transverse section:
r104 — Ty € F(’HF,Hom(SQ, V))

So we can resolve Op, = OA:F with the Koszul complex of this section. Restricting
to Fy x {0}, we get the Kozul complex of the section z1a € I'(Hom(S2,V)) on
F, x BGL(S5).

This section z1a is not transverse, but it is a transverse section of the subbundle
Hom(S2,.51). So the homology of the Kozsul complex is the exterior algebra on the
dual of the quotient bundle:

HOHI(SQ, V/Sl)v

The GL(Ss)-irreps that occur in this exterior algebra are precisely the set 20. O

Remark 3.4. The same argument works for k > 2, replacing 2J with the set of
Schur powers S7S indexed by Young diagrams with width(y) < n — k.

4. STRATIFIED MUKAI FLOPS

4.1. The geometry of the kernel. For the stratified Mukai flop, we introduce
the stack

£ = [Hom(S,V)® Hom(V,S) ®End(S) / GL(S) ]
where as before dim(S) = 2 and dim(V) = n > 2. We use co-ordinates z,y and p
for the three summands. This stack contains the spaces E+ from Section 1.1 as the
open substacks

E; = {rank(z) = 2} and E_ = {rank(y) = 2}

although these are not quite the GIT quotients; see Remark 4.5. Write E; for the
affine singularity underlying these three spaces.

Lemma 4.1. Ey embeds into the vector space
End(V)®? @ C?
via the map:
(z,9,p) = (zy, zpy, det(p), tr(p))

Proof. The claim is about the generators of the ring of GL(S)-invariant functions
on &. Firstly, by picking a basis for V' and scaling the rows of # and the columns
of y separately we obtain a (C*)?" action on &, commuting with the GL(S) action,
i.e. a 2n-dimensional multigrading on the ring of functions. By exploiting this
multigrading as in [KP, §4] we can essentially reduce the problem to the case n = 1.

Next, using the diagonal 1-parameter subgroup in GL(S) it’s clear that any
invariant function must be a polynomial in the entries of p and the entries of the
rank 1 matrix:

g=yx € End(S)

Then by [KP, p. 21], the Cayley-Hamilton theorem, and the fact that det(q) = 0,
the ring of invariants (for n = 1) is generated by:

det(p), tr(p), tr(q) = zy and tr(pg) = xpy
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Returning to the case of general n, the invariants are generated by det(p), tr(p) and
the individual entries of zy and xpy. O

Now we want to understand the closure of the diagonal. Recall the stack Dp from
Lemma 3.2, and let D be the total space of the vector bundle End(S;) @ End(S?)
over Dr. Thus D has co-ordinates

nC s TV S, on
a

(where 1 is an injection) and there is an embedding D — FE; x £. Recall that
E° C E+ denotes the common open subset, and A C E° x E° the diagonal. Then
A is a subset of D, it is the locus where y5 and a have full rank and also:

pe =a 'pia

We can take the closure A C E; x E_, or the further closure A C E, x &; both
lie inside D. In fact A is the closed substack:

A ={ aps = p1a, det(p1) = det(pa), tr(p1) = tr(p2) } €D (4.2)
Note that the first equation alone is not enough, it cuts out a reducible subvariety
with three equidimensional components (indexed by the rank of a). We need the
remaining equations to specify the correct irreducible component. In particular A
is not a complete intersection.
It follows from Lemma 4.1 that A agrees with the fibre product B, xp, E_. It
is a quadric cone over Gr(2,n) x Gr(n,2).

4.2. The weights of the kernel. Now we introduce, as in Section 1.1, the invari-
ant function

W =tr(pyz) €T(O¢)
and the corresponding category of matrix factorizations MF(E, W). By Kunorrer
periodicity MF(E, W) is equivalent to the derived category of the zero locus:

{yz=0} CF

The two sides of the statified Mukai flop, X4, are the GIT quotients of this stack.
This is hyperkéahler reduction; the equation yz = 0 is the complex moment map for
the action of GL(S) on the complex symplectic space Hom(S, V') @ Hom(V, S).

Remark 4.3. We also include an additional C* action on £ (the ‘R-charge’) which
acts on (z, y, p) with weights (0, 0,2) and hence on W with weight 2. This is required
for the category of matrix factorizations to be Z-graded and for Knérrer periodicity
to work as stated. But it is essentially irrelevant for our proof of Theorem 1.1 so
we will avoid mentioning it as far as possible.

For the stack £ a magic window can be built from the following set of GL(.S)-
irreps:

mﬂ:{&mﬁS@wmmahlzo7k+z<n} (4.4)

Note the difference between this and the set 20 for the Grassmannian flop (3.1).
The additional factor of End(S) relaxes the bound on k + [ by 1.

By Theorem 2.1 the corresponding magic window Mgy C D®(&) is equivalent to
the derived category of either GIT quotient. There is also a window in the matrix
factorization category

MYy, C MF(E, W)
defined by exactly the same grade-restriction rule as Myy/. Again the restriction

functors from M}y, to matrix factorizations on either GIT quotient are equivalences
[HLS, Thm. 5.1
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Remark 4.5. The GIT quotients of £ are not EL but slightly larger open substacks.
The reason is that points where rankz < 2 (or ranky < 2) can be semi-stable,
provided some condition on p holds. However, the critical locus of W is contained
entirely in F4, so these additional semi-stable points do not affect the category of
matrix factorizations. Hence the restriction functors

My — MF(Ex, W)

are both equivalences. This is a general fact about hyperkahler quotients of this
form [HLS, §5].

Now we consider the stack E; x & with the obvious function Wy — W;. The
sky-scraper sheaf Ox defines an object in the category

MF (E} x &, Wo — W)

since A is contained in the locus where W1 = W,. Theorem 1.1 follows immediately
from the following:

Proposition 4.6. The restriction of Ox to Ey % {0} has weights contained in the
set .

Proof. Recall from Section 4.1 the stack D, which is the total space of the vector
bundle End(S7) ® End(Sz2) over the stack Dp that we used in Lemma 3.2. Write
‘H for the total space of the same vector bundle over the stack Hpg (3.3). Then we
have inclusions o

A—=D—H—E; x&

and # is flat over £. Moreover, by (4.2) the locus A is the intersection of D with
the substack:

C = { aps = p1a, det(p1) = det(pa), tr(pi)=tr(p2)} CH (4.7)

Since D C H is the subset {x1a = z2} the intersection of C and D is obviously
transverse. Hence

Ox = Oc®0p
does not need to be derived, and the weights of Ox along £ x {0} are just the
tensor products of the weights of O¢ and Op.

The stack Ey x £ is a vector bundle over Fy x F and D and H are just the
restrictions of this bundle to the substacks Dp and Hp. This means that computing
the weights of Op is the same problem as we encountered in the Grassmannian flop,
and the answer is the set 20 (Lemma 3.2).

Thus the problem is to compute the weights of Og¢, i.e. the additional weights
that appear from the (non-transverse) equations for C. To do this we view H as
the vector bundle

HOI’H(SQ, Sl) ) EHd(Sl) D End(Sg)
over Gr(2,V) x F. Then C is a cone in this vector bundle cut out by the equations
(4.7). Furthermore we can ignore traces; we have splittings

where the first factor is the trace-free endomorphisms, and it is clear that we can
replace C with the set

{ap2 = p1a, det(p1) = det(p2) } C Hom(S2,S1) ® Endg(S1) @ Endg(S2) (4.8)

without affecting our weight computation. In Section 4.3 below we show how to
complete this computation and find that the weights of O¢ are exactly:

O, S5, and det Sy

Tensoring 20 by these irreducible representations gives precisely the set 20’ O
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4.3. A free resolution. Let H be a 4-dimensional vector space. Consider the
GL(H)-representation
A’H & H
with co-ordinates (p,a), and let C' be the invariant subvariety
C={pAp=0,pAha=0}

(the first equation is the Pliicker relation). Thinking of this as a GIT problem, this
C is precisely the subvariety destabilized by a 1-parameter subgroup A of the form:

-1
~v:C* — GL(H), t|—>< t*lo )
0

This means we have a Springer-type resolution of C' given by the vector bundle

C= (detU@ U)Gr(Q’H) — C

where U is the tautological subbundle on Gr(2, H). Hence, following Weyman [W],
we can construct a free resolution of O¢ by embedding C inside AH x H x Gr(2,H),
taking its Koszul resolution, and then pushing down. It is straight-forward to
compute that the resulting resolution is:

(det H)™? — HY(det H)™' @ (det H)™' — (det H) '@ A*HY — O

Now take two 2-dimensional vector spaces S1, Sz and set H = Hom(Ss,.51). We
observe that we have an isomorphism of GL(S7) x GL(S2) representations

End(S1) @ Endo(S2) = A?H @ (det S1)~*(det Sy) (4.9)

where as above Endg(S;) denotes the trace-free endomorphisms. So the represen-
tation A°H @ H is essentially the same as the representation (4.8). Moreover C
corresponds to the locus

{ ap2 = p1a, det(p1) = det(p2) }

(this requires the correct choice of signs in the isomorphism (4.9)). So after modi-
fying by the correct powers of det .S; we get a free resolution of O¢ of the form:

(det Sg)(det Sl)_l — HOII’I(Sl, Sg)@(det Sg)(det Sl)_l — O@Hom(sl, Sg) — O
(4.10)
Thus the restriction of O¢ to the origin contains the GL(S3)-irreps

C7 SQ, det SQ
and no others.

Remark 4.11. For the purposes of Section 5 let us make a comment on shifts and
R-charges (Remark 4.3). Implicit in the resolution (4.10) is the standard homolog-
ical algebra convention that the degrees shift by 1 as we move right-to-left across
the page, so the differentials all have degree 1. However, to work with matrix fac-
torizations we must take into account R-charge, and then this convention is not
quite correct. For example the first factor of the final map is:

det(p2) — det(p1) : O — O

But the R-charge of det(p;) is 4, so for the differential to have degree 1 we must
interpret it as a map:

det(ps) — det(py) : O[-3] — O

Similar degree shifts apply to the other summands. If we take these into account,
and use the standard position-on-the-page convention, then (4.10) should really be:
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/—\

@) @)
—_ I

@ N Hom(S1, S2) «—— Hom(S51,52) - @

(det Sg)(det 51)71 T — (det Sg)(det 51)71

(4.12)

It is possible to turn this into a matrix factorization by adding additional arrows.

We repeat that this has no relevance to Theorem 1.1 since shifts are of no im-
portance there, only GL(S3) weights.

5. COMPARISON TO CKL

We return temporarily to the case of general k and n. As before we let X4 be
the two sides of the stratified Mukai flop, with co-ordinates (z,y) satisfying the

moment map condition yz = 0 (Section 4.2). Also recall the space F' = Ap from
Section 3 which has co-ordinates:

Z1 Y2
S1 &K/ 52

a
The fibre product X x x, X_ is the subvariety of F cut out by the equations:
aysry = 0= yox10 (5.1)

It has k + 1 irreducible components Zj, ...Z, distinguished by specific rank condi-
tions:

Z; = {(x1,y2,a), rank(a) < k — i, null(ysx1) >k —i}
Let Z be the normalization of Z;, and set ©; to be the shifted line bundle:
0; =0z @ (det S1)" ® (det S)~*[—i].
In [CKL], Cautis, Kamnitzer and Licata constructed a Rickard complex

@:{@k$-~i>@1i>@0} (5.2)

as a geometric categorification of the braid group action of the quantized sls on the
K-theory of the ‘quiver varieties’ UyT" Gr(k, V).

Theorem 5.3 ([CKL]). The complex (5.2) has a unique convolution T = Conv(0),
which defines the Fourier-Mukai kernel of a derived equivalence:

o7 : DY(T* CGr(k,V)) =% DY(T* Gr(V, k).

In [T], the second author translated the Rickard complex (5.2) into the context
of matrix factorizations. If we denote the Knorrer periodicity equivalence by

U : DY(X1) =5 MF(Ex, W)

then it was shown ([T, Prop. 3.8]) that each functor ¥®g, ¥~ is induced by a
matrix factorization kernel of the form:

(m:)+O1, @ (det S1)* @ (det Sg) F[—4% — i (5.4)

Here m; : I, — E4 x E_ is a projection from a variety I, which we describe
as follows. First consider the flag variety Fl(k — i, k,n) with its two tautological
bundles S’ C S; C V. Now take the total space

End(S") & End(S;) @ End(S2) — Fl(k — i, k,n) x Gr(n, k)
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which we give co-ordinates

D1 b2

X X
Sl‘L)VL%SQ

\5/%
)

’

p

where 1, y2, ap are all of full rank. Then I; is the subvariety cut out by the relations:

alp/ =pi1a1, az2p2 = p/a2~ (5~5)

As ay is an embedding, the first equation in (5.5) is equivalent to p’ = py|s/. The
map 7; : I; — Iy C By x E_ is given by composing ajas and forgetting p’.

The differentials d in (5.2) are transported via Knorrer periodicity to morphisms
of matrix factorizations, which we continue to denote by d. The result is a complex
of matrix factorizations:”

()01 k2 — k] -5 o - (1).05,[-2] - (m0). 01, (5.6)

The totalization of this complex is (up to a line bundle) the kernel of the equivalence
Ud,U L,

Theorem 5.7 ([T, Thm. 3.3]). The totalization of (5.6) is the kernel for the
window equivalence corresponding to the window:

{76, 0<y, < <m<n}
Note that for k = 2 this is the window 20" (4.4). Hence by Theorem 1.1:

Corollary 5.8. When k = 2 the totalization of (5.6) is equivalent to Ox in the
category MF(E; x E_, Wy — Wy).

Our goal for the remainder of this section is to unpack Corollary 5.8 explicitly.
We will find locally free resolutions of each object in (5.6) and see that when we
form the convolution, after a lot of cancellation, we get exactly the resolution we
found in Section 4.3.

The right setting for this computation is the total space of the vector bundle:
End(S;) ® End(Sy) — F
This is essentially the space D from Section 4.1.% It carries the superpotential
W = tr(yoz1aps — ayzw1p1)
which is the restriction of Wy — W; from F x E_.

Remark 5.9. If the equations (5.1) cutting out the fibre product X4 X x, X_ in F
were transverse then Knorrer periodicity would give an equivalence:

MF (End(S;) @ End(S2) 5, W) = DY(X4 xx, X_)

But they are far from transverse. So working in this category of matrix factoriza-
tions is the same as equipping the fibre product with a derived structure which is
non-trivial at all points.

7We omit the common line bundle (det S1)* ® (det S2) " that appears in each of the kernels (5.4).
8To be precise, it’s the open subset of D where rank(y2) = 2.
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Within W = 0 we have the subvariety

Iy ={aps =pia}

as defined above. This is similar to the fibre product X x x, x X_ in that it consists
of three irreducible components distinguished by the rank of a. One component is
the space

IQZ{LL:O} C Iy

where rank(a) = 0. The component for rank(a) = 2 is

A = { apy = p1a, det(py) = det(py), tr(p1) = tr(p2) } CIo
which equals the fibre product Ey x g, E_ (Section 4.1). Finally we have the space

I :{p1 preserves the line S C Sy, asps = (p1]s/)az }
C End(Sl) ©® End(Sg) D HOI’H(SQ, SI)F1(172,V)XGY(V’2) (510)

There is a map 71 : I; — Iy whose image consists of two irreducible components: I
and the component for rank(a) = 1. Setting k£ = 2 in (5.6), the Cautis-Kamnitzer-
Licata kernel is—after Knorrer periodicity—the totalization of:

012 [*6] — (71'1)*0]1 [72] — O[O (511)

Now we compute some locally free resolutions. Firstly the locus I5 is cut out by
the transverse section a € I'(Hom(S3, S1)) so we have a Koszul resolution:

Sym? S2(—1,0)
D

0(-2,2) — 8Y ® Sa(—1,1) — — 8/ ®8 — O (5.12)

Sym? SY(0,1)
Here for legibility we've adopted the notation O(a,b) = (det S1)%(det S2)’. As
usual we can turn this into a ‘Koszul-type’ matrix factorization by adding the
arrows poyox1 — Y2xr1p1 in the opposite direction.
Next consider the locus I itself, which is cut out transversely by aps — p1a €
I'(Hom(S2,51)). It is equivalent to a Koszul-type matrix factorization:

2
0= SV oS e """ 2 = e S(—1,1) = 0(~-2,2) (5.13)
Sym? 5Y (0,1)
Note that the Koszul resolution of Oy, consists of the right-to-left arrows only.
We’re writing it this way around because the section ap, — p1a has R-charge 2, see
Remark 4.11.

This resolves the first and third terms of (5.11). The middle term (m1).Oy, is
more complicated. Within the space (5.10), the locus I is cut out by two transverse
conditions, so we can resolve Oy, on this space by the Koszul complex for the two
sections

p1 € I'(Hom(S',51/5)) and aspz — pras € I'(Hom(Ss, S"))
which both have R-charge 1. Also, we have an embedding
Hom(S5, 8")pi(1,2,v)xGr(v,2) = Hom(S2,51)ri(1,2,v)xGr(v,2)
whose image is cut out by the transverse section
az € I'(Hom(S,51/5"))

(which has R-charge zero). Using these three Koszul complexes, and pushing-down
along FI1(1,2,V) — Gr(2,V), we construct a locally free resolution of (m).Or,
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which has underlying C*-equivariant vector bundle:

1] 1]
® Sy ®82 ®
Sym2 S2(—1,0) [« Sym2 S2(—1,0)
® SY ®S2 @
O(—1,1) Sym? 5Y (0,1) & Sym? 5Y (0,1) O(—1,1)
& SY ®85(—1,1) &
O(=1,1) @ O(-1,1)
® Sy ®8S2(—1,1 ®
0(=2,2) 1 @82(=11) 0(-2,2)
(5.14)

We have not attempted to indicate the differentials in this resolution. Once again
one can turn it into a matrix factorization by adding further arrows.

Now we wish to compare the convolution of (5.12), (5.13) and (5.14) with Ox.
In Section 4.3 we ignored traces, so to get a resolution of Ox we must take two
copies of (4.12) and form the cone on the map tr(ps) —tr(p; ), which has R-charge 2.
The result is a matrix factorization with underlying C*-equivariant vector bundle:

SY ®S o
o et 8Y®S, & o
® 1) b O(-1,1) &)
O(-1,1) D 51V®52 VGB O(-1,1)
0(-1,1) Sy ®S2

This agrees with the convolution (5.11) assuming that the blue and red terms
cancel as indicated:

N Sym? S2(—1,0) v
0(-2,2) SY®82(—1,1) @ SY®S, o
Sym? S (0,1)

o o
@ SY ®S2 (&)
Sym? S2(—1,0) @ Sym? S2(—1,0)
@ SY ®8S2
O(-1,1) Sym? 57 (0,1) @ Sym? SY(0,1) O(-1,1)
® Sy ®8S2(—1,1) @
O(-1,1) ) O(=1,1)
® Y ®S5(—1,1 ®
0(-2.2) Sreshy 0(-2,2)
Sym? S>(—1,0)
o SY ®Ss ® SY®Ss(—1,1) 0(-2,2)

Sym? SY(0,1)

REFERENCES

[BCF] M. Ballard, N. Chidambaram, D. Favero, to appear.

[B4+] M. Ballard, N. Chidambaram, D. Favero, P. McFaddin, R. Vandermolen, Kernels for
Grassmann flops, J. Math. Pures Appl. (2021), arXiv:1904.12195.

[BDF] M. Ballard, C. Diemer, D. Favero, Kernels from compactifications, arXiv:1710.01418.

[BO] A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, arXiv:alg-
geom/9506012.

[Br] T. Bridgeland, Flops and derived categories, Invent. Math. (2002), arXiv:math/0009053.

[BLV] R-O. Buchweitz, G. Leuschke, M. Van den Bergh, Non-commutative desingularization of
determinental varieties, II: arbitrary minors, Int. Math. Res. Not. (2016), arXiv:1106.1833.

C] S. Cautis, Equivalences and stratified flops, Compos. Math. (2012), arXiv:0909.0817.

[CKL] S. Cautis, J. Kamnitzer, A. Licata, Derived equivalences for cotangent bundles of Grass-
mannians via categorical sly actions, J. Reine Angew. Math. (2013), arXiv:0902.1797.

[DS] W. Donovan and E. Segal, Window shifts, flop equivalences and Grassmannian twists,
Compos. Math. (2014), arXiv:1206.0219.

[HL1] D. Halpern-Leistner, The derived category of a GIT quotient, J. Amer. Math. Soc. (2015),
arXiv:1203.0276.

[HL2] D. Halpern-Leistner, Derived ©O-stratifications and the D-equivalence congjecture,
arXiv:2010.01127.


https://arxiv.org/abs/1904.12195
https://arxiv.org/abs/1710.01418
https://arxiv.org/abs/alg-geom/9506012
https://arxiv.org/abs/alg-geom/9506012
https://arxiv.org/abs/math/0009053
https://arxiv.org/abs/1106.1833
https://arxiv.org/abs/0909.0817
https://arxiv.org/abs/0902.1797
https://arxiv.org/abs/1206.0219
https://arxiv.org/abs/1203.0276
https://arxiv.org/abs/2010.01127

[HLS]
[H]

[Kap]
[Kaw]

[Kaw2]

[KP]

A SIMPLER KERNEL FOR STRATIFIED MUKAI FLOPS 15

D. Halpern-Leistner and S. Sam, Combinatorial constructions of derived equivalences, J.
Amer. Math. Soc. (2020), arXiv:1601.02030.

W. Hara, On derived equivalence for Abuaf flop: mutation of non-commutative crepant
resolutions and spherical twists, Le Matematiche (2022), arXiv:1706.04417.

M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces,
Invent. Math. (1988).

Y. Kawamata, D-equivalence and K-equivalence, J. Differ. Geom. (2002),
arXiv:math/0205287.

Y. Kawamata, Derived equivalence for stratified Mukai flop on G(2,4), Mirror symme-
try V. Proceedings of the BIRS workshop on Calabi-Yau varieties and mirror symmetry,
December 6-11, 2003, (2006), arXiv:math/0503101.

H. Kraft and C. Procesi, Classical invariant theory: a primer, (1996), available online.

[MSYZ] D. Maulik, J. Shen, Q. Yin, R. Zhang, The D-equivalence conjecture for hyper-Kdhler

[N1]

[N2]

(O]
[51]
[S2]

[Sh]

varieties via hyperholomorphic bundles, Invent. Math. (2025), arXiv:2408.14775.

Y. Namikawa, Mukai flops and derived categories, J. Reine Angew. Math. (2003),
arXiv:math/0203287.

Y. Namikawa, Mukai flops and derived categories II, Algebraic structures and moduli
spaces. Proceedings of the CRM workshop, Montréal, Canada, July 14-20, 2003, (2004).
arXiv:math/0305086.

D. Orlov, Triangulated categories of singularities, and equivalences between Landau—
Ginzburg models, Sb. Math. (2006), arXiv:math/0503630.

E. Segal, Equivalences between GIT quotients of Landau-Ginzburg B-models, Comm.
Math. Phys. (2011), arXiv:0910.5534.

E. Segal, A new 5-fold flop and derived equivalence, Bull. Lond. Math. Soc. (2016),
arXiv:1506.06999.

I. Shipman, A geometric approach to Orlov’s theorem, Compos. Math. (2012),
arXiv:1012.5282.

[SVdB] S. Spenko and M. Van den Bergh, Non-commutative resolutions of quotient singularities

[T]
(W]

for reductive groups, Invent. Math. (2017), arXiv:1502.05240.

W. Tseu, Window equivalences via categorical s(2) actions, arXiv:2412.15169.

J. Weyman, Cohomology of vector bundles and syzygies, Cambridge Tracts in Mathemat-
ics, vol. 149, 2003.


https://arxiv.org/abs/1601.02030
https://arxiv.org/abs/1706.04417
https://arxiv.org/abs/math/0205287
https://arxiv.org/abs/math/0503101
https://dmi.unibas.ch/fileadmin/user_upload/dmi/Personen/Kraft_Hanspeter/Classical_Invariant_Theory.pdf
https://arxiv.org/abs/2408.14775
https://arxiv.org/abs/math/0203287
https://arxiv.org/abs/math/0305086
https://arxiv.org/abs/math/0503630
https://arxiv.org/abs/0910.5534
https://arxiv.org/abs/1506.06999
https://arxiv.org/abs/1012.5282
https://arxiv.org/abs/1502.05240
https://arxiv.org/abs/2412.15169

	1. Introduction
	1.1. Results and outline
	1.2. Acknowledgements

	2. Magic windows and kernels
	3. Review of the Grassmannian flop
	4. Stratified Mukai flops
	4.1. The geometry of the kernel
	4.2. The weights of the kernel
	4.3. A free resolution

	5. Comparison to CKL
	References

